AP Calculus Fall Final Exam up to $\mathbf{1 0} \%$ Bonus on Final exam grade.

Question 1

$\lim _{x \rightarrow 0} \tan \left(\frac{\sin 2 \pi x}{6 x}\right)=$
(a) 0
(b) $1 / \sqrt{3}$
(c) 1
(d) $\sqrt{3}$
(e) The limit does not exist

Question 2

A function f is defined on an interval $[a, b]$. Which of the following statements could be false?
I. If f is differentiable on (a, b) and if f has no zeros on $[a, b]$, then $f(a)$ and $f(b)$ have the same sign.
II. If f is continuous on $[a, b]$, and if $f(a)<0$ and $f(b)>0$, then there must be a point $c \in(a, b)$ such that $f(c)=0$.
III. If f is continuous on $[a, b]$ and there is a point c in (a, b) such that $f(c)=0$, then $f(a)$ and $f(b)$ have opposite sign.
IV. If f is differentiable on an interval $I \supset[a, b]$, and if $f(a)$ and $f(b)$ have opposite sign, then there must be a point $c \in(a, b)$ such that $f(c)=0$.
(a) II only
(b) II and IV
(c) I, III and IV
(d) II and III
(e) I and III

Question 3

If $\frac{d}{d x} f(x)=g(x)$ and if $h(x)=e^{2 x}$, then $\frac{d}{d x} f(h(x))=$
(a) $g\left(e^{2 x}\right)$
(b) $2 e^{2 x} g\left(e^{2 x}\right)$
(c) $2 e^{2 x} g(x)$
(d) $e^{2 x} g^{\prime}(x)$
(e) $e^{2 x} g\left(e^{2 x}\right)$

Question 4

Evaluate:

$$
\frac{d}{d x} \int_{3}^{-5 x^{2}} \frac{2}{e^{4 t}} d t
$$

Question 5

$\int_{2}^{3} \frac{x}{x^{2}+1} d x=$
(A) $\frac{1}{2} \ln \frac{3}{2}$
(B) $\frac{1}{2} \ln 2$
(C) $\ln 2$
(D) $2 \ln 2$
(E) $\frac{1}{2} \ln$

Question 6

If $\int_{0}^{k}\left(2 k x-x^{2}\right) d x=18$, then $k=$
(A) -9
(B) -3
(C) 3
(D) 9
(E) 18

Question 7

The radius of a sphere is increasing at a constant rate of $5 \mathrm{~cm} / \mathrm{sec}$. At the instant when the volume of the sphere is increasing at $35 \mathrm{~cm} 3 / \mathrm{sec}$, What is the surface area of the sphere?

